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Overview

Timeline

* 1 May 2005
« 31 Oct 2008
* 2%

Budget
Total project funding

— $2.9 million, DoE
— $737k, cost share
$0, FY04

$300K, FY05

Barriers

 Barriers:

— V. Feedstock Cost and Availability

— W. Capital costs and efficiency of
technology

 Barriers Addressed

— Technology Energy Efficiency
— Capital Cost
— Feedstock Flexibility

Partners

* University of North
Dakota Environment
Energy Research
Center



Biomass Slurry Reforming Objectives

DOE: $1.75 kg 99.9+% H, with an LHV efficiency of 50%

. Determine LHV Efficiency Using HYSYS

« Major efficiency determinants and impact of catalyst efficiency/selectivity
« Required hydrolysis rate per in unit input energy

« Capital and energy cost of intermediate hydrogenation step

. H, Cost via H2A Spreadsheet: Plant Cost, Rate of Return & Feedstock Costs

. If DOE Cost and Efficiency Targets Can Be Met, Commence Next Phase
* Optimum hydrolysis conditions: Energy and Capital Cost
» Hydrolysis product chemical composition and physical properties
- Sugar identification and concentrations
- ldentification and quantification of low molecular weight organics
- Solubility, AMW and surfactant/foaming properties of lignin fraction
« Catalysis discovery and testing

. Micro-scale continuous operation of membrane reformer with batch hydrolysis
« ~500 hr catalyst performance test
« Collection of material and heat balance data important for plant design

. Final Economic and Energy Analysis for Final Report 3



Project Schedule

1 Jan, 2005 - 1 Oct, 2007
Phase |: Reactor and H , Production System Modeling, Energy, & Economic Analysis
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Approach: Biomass Slurry to Hydrogen Concept

Slurry of ~10 % Ground

Biomass (Wood) in Dilute Acid
44% cellulose
19% hemicellulose

13% “other” —_—
23% lignin 1 or more
<1°/0 “ash” .
<1% protein Hyg{gg));SIS

Preferential RCHO R
Hydrogenation Catalysts 2

Optional Sugar Hydrogenation

~59% sugar alcohols
~10% “reformable others” = .....
~31% lignin + cellulose fragments, etc.

Only if advanced catalysts seem
unlikely reach g H, / kg feed goals

have high activity and very low CH, make

Reformer Feed

~41% soluble C, and (C;),, “sugars”
~18% soluble “C.” sugars

~10% “reformable others”

~31% lignin+cellulose fragments etc.

Hydrolysis targets

High Selectivity Pt-MM rafts on
engineered nano-structured oxide
like Tiyy_.yyPP1,Dp2,0,

~83 g 99.9+ H, / kg dry Feed
Recovered Through Membrane

~9 g H, or Equivalent as fuel gas
~300 g Lignin and other fuel

~1 kg CO,

W£rDp, 0, WGS Catalysts

Xty

5



UNDEERC l

Original Project Plan Overview

Project start
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Approach: Initial Process Inputs and Outputs

> Sulfuric acic>

> Water/Steam

> Conditioner
Pd Membrane
l v Separator Fuel
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A
>Recycle Water T I >Recyc1e Cat >\j
> Recycle Cond >—
E Catal >
[Tt T > Recycle Acid> atalyst X

<_t Flash -
G & Bumer e | L I

4, % Fuel Catalytic |

Gas Oxidation

/\
Q
fe~)
[72]
a
[72]

(N




Approach: Experimental Design to Optimize Hydrolysis

* Overall efficiency depends on optimizing hydrolysis energy / acid requirements
- Lower acid concentration
+ Less expensive alloys etc.
+ Higher SA & activity reforming catalysts = smaller reforming reactors
+ Less unnecessary chemical degradation = higher H, yield
- Lower Temperature
+ Increased residence time thus larger volumes and increased costs
+ Lower autogenous steam pressures = lower capital costs
+ Less expensive alloys etc.
+ Less dehydrogenation etc. = higher H, yields
« Poplar assumed to be initial feed; grinding energy similar to mechanical pulping
* Input data for refined economic and efficiency model



Nano-Engineered Noble Metal / Doped Metal Oxide Catalyst

Design & synthesize active oxide structure to maximize accessible sites/vol.

Nanoparticle (< 3.5 nm)

S
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Micropore (> 5 nm)

% MacroPores

____________

Conceptual Porous Metal-Oxide Framework
Shown in 2D
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mixed metal clusters
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UTRC Catalyst Discovery Approach

Atomistic catalyst design, synthesis, characterization, reaction studies & kinetic analysis

Conceptual Catalyst Design

Characterization

iCatalyst B

Catalyst A

3000 2000 1000

Wavenumbers (cm-)

4000

Catalyst Synthesis

High active surface area

Nanocrystalline structure

~100% NM dispersion

Quantum Mechanical Atomistic
Modeling for advanced catalyst design

Kinetic Expressions Derived
From Reaction Data
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VASP Modeling Insights Led To Better Catalysts

Calculated Coupled Enthalpies
Dp,Ce 1o (x+y)ZryO24 = DP,Ce15 (4412003 + O
H,+ O — H,0O CO+0 - CO,

Oxide Slab kd/Mole kd/Mole
Ce,,0,, -154.5 -222.4
Ce,Zr:0,, -154.5 -222.1
TaCeyZr:0,, 77.2 9.6
MoCeyZr;0,, 48.3 -19.3
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Xylose Adsorbs More Strongly Than Xylitol on Pt(111)

Aldehyde O forms stronger bond than terminal alcohol O

OC Pt

Xylose/Pt(111) Xylitol/Pt(111)
Binding Energy = -92 kd/mole Binding Energy = -65 kdJ/mole

12
Negative binding energy indicates exothermic process



Ce Dopant in TiO, Decreases H,S-Pt Binding 16%

« Early results for Pt raft system, before full relaxation
 Anatase (101) TiO, with and without Ce

Pt(111),,, /AnataseTiO,(101) Pt(111)1ML/4 2a% Ce_Anatase T|02(101)
Binding Energy -106.53 kdJ/mole Binding Energy -89.50 kdJ/mole

OTi Pt Ce
13



Oxide Dopant Shifts Pt & S DOS to Higher Energy

— s orbital — p orbital — d orbital — f orbital
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Progress: Conceptual Process Flow Diagram

I
Biomass —» Pretreatment —» Pump110 —l

HO - Pump120 ——»  Tank ¥
' 300 C 30000 g
Decanter 140 bar 140 bar| &
o
Acid —» Pump130 —¢ »| Hydrolysis —» Pump210 —» Filter ¢
v £
Recycle? HEX111 Exhaust/SOx : > O

‘ 4-| recovery Steam+CO, Solid ‘&3 <

Air 1 » HEX110

v
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Steam

Burner <«
A
Burner/HEX ¢—
Ash
H,O —» Pump150 T T HEX150
[
2 Pump360 <
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Progress: Current HYSYS Process Flow Diagram
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Future Work

« FY 2005:

Initial feasibility analysis of a 2000 ton/day (dry) plant design showing a viable
path towards the DOE’s 2010 efficiency (50% LHV) and cost ($1.75/kg H.)
targets.

Low-level construction of catalyst synthesis & testing infrastructure

* FY 2006:

Is there a preliminary 2000 ton/day (dry) biomass plant design that could reach
the DOE’s 2010 efficiency (50% LHV) and cost ($1.75/kg H,) targets?

GO/NO GO decision.

Demonstrate an acid tolerant, model sugar solution reforming catalyst
+ Promising kinetics and selectivity
+ Path for cost-effective scale up (mass production) exists

|dentify preliminary hydrolysis conditions at UND-EERC and hydrolyzed product
chemical composition and physical properties

17



Future Work
. FY 2007:

— Demonstrate effective hydrolysis conditions for actual biomass system
and a path to scale-up for a viable plant design

— Demonstrate in the lab a potentially long lived, cost effective liquid phase biomass slurry reforming
catalyst giving ~0.1 moles H,/Total Pt equivalent-second

— Demonstrate that a plant designed with experimentally determined hydrolysis and reforming rates
and conditions meets 50% LHV efficiency and $1.75 /kg H,

— Demonstrate wash coating of active catalyst on to selected support

« FY 2008:

— ldentify optimum hydrolysis conditions

— Demonstrate wash-coated reforming catalyst with actual hydrolyzed biomass

— Design, build, test and deliver proto-type continuous micro-scale reforming reactor to UND-EERC
— Complete 500 hrs of reformer operation and collect data important to full scale pilot unit design

— Estimate H,/kg cost and LHV efficiency using 2000 T/day plant design finalized with actual batch
hydrolysis and continuous micro-scale reforming reactor data.

18



Hydrogen Safety

The most significant hydrogen hazard associated
with this concept is the 10% H, content of the
up to 2000 psig process gas.
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Hydrogen Safety

Our Approach to deal with the hazard
in the laboratory is:

* H,/Flammable gas detectors and ventilation interlock
- System alarms if > 10% LFL (0.4% H,) detected
- All heater power and flammable gas flows shut off if
either >25% of lower flammable limit (1% H,) detected,
or drop in ventilation rate
- System design limits flammable gas flows to <10% of

lower flammable limit based on measured ventilation
rate

20



Hydrogen Safety

Our Approach to deal with the hazard in the
proposed micro-scale demonstration unit is:

* Multiple H,/Flammable gas detectors

» System alarms if >10% LFL (0.4% H,) detected

* All heater power and flammable gas flows shut off if
>25% of lower flammable limit (1.0% H,) detected at unit.

* N, purging of all potential sources of ignition

21
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